Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evolution of the RALF Gene Family in Plants: Gene Duplication and Selection Patterns.

Identifieur interne : 002A96 ( Main/Exploration ); précédent : 002A95; suivant : 002A97

Evolution of the RALF Gene Family in Plants: Gene Duplication and Selection Patterns.

Auteurs : Jun Cao [République populaire de Chine] ; Feng Shi

Source :

RBID : pubmed:22745530

Abstract

Rapid alkalinization factors (RALFs) are plant small peptides that could induce a rapid pH increase in the medium of plant cell suspension culture and play a critical role in plant development. The evolutionary process of the RALF gene family remains unclear. To obtain details of the phylogeny of these genes, this study characterized RALF genes in Arabidopsis, rice, poplar and maize. Phylogenetic trees, evolutionary patterns and molecular evolutionary rates were used to elucidate the evolutionary process of this gene family. In addition, the different signatures of selection, expression patterns, and subcellular localization of RALFs were also analyzed. We found that the RALF gene family had a rapid birth process after the separation of the eudicot and monocot species about 145 million years ago, that tandem duplication played a dominant role in the expansion of Arabidopsis and rice RALF gene family, and that RALFs were under purifying selection according to estimations of the substitution rates of these genes. We also identified a diverse expression pattern of RALF genes and predominant extracellular localization feature of RALF proteins. Our findings shed light on several key differences in RALF gene family evolution among the plant species, which may provide a scaffold for future functional analysis of this family.

DOI: 10.4137/EBO.S9652
PubMed: 22745530
PubMed Central: PMC3382376


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evolution of the RALF Gene Family in Plants: Gene Duplication and Selection Patterns.</title>
<author>
<name sortKey="Cao, Jun" sort="Cao, Jun" uniqKey="Cao J" first="Jun" last="Cao">Jun Cao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Life Science, Jiangsu University, Xuefu Road 301, Zhenjiang (212013), Jiangsu, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Life Science, Jiangsu University, Xuefu Road 301, Zhenjiang (212013), Jiangsu</wicri:regionArea>
<wicri:noRegion>Jiangsu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shi, Feng" sort="Shi, Feng" uniqKey="Shi F" first="Feng" last="Shi">Feng Shi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22745530</idno>
<idno type="pmid">22745530</idno>
<idno type="doi">10.4137/EBO.S9652</idno>
<idno type="pmc">PMC3382376</idno>
<idno type="wicri:Area/Main/Corpus">002980</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002980</idno>
<idno type="wicri:Area/Main/Curation">002980</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002980</idno>
<idno type="wicri:Area/Main/Exploration">002980</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evolution of the RALF Gene Family in Plants: Gene Duplication and Selection Patterns.</title>
<author>
<name sortKey="Cao, Jun" sort="Cao, Jun" uniqKey="Cao J" first="Jun" last="Cao">Jun Cao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Life Science, Jiangsu University, Xuefu Road 301, Zhenjiang (212013), Jiangsu, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Life Science, Jiangsu University, Xuefu Road 301, Zhenjiang (212013), Jiangsu</wicri:regionArea>
<wicri:noRegion>Jiangsu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shi, Feng" sort="Shi, Feng" uniqKey="Shi F" first="Feng" last="Shi">Feng Shi</name>
</author>
</analytic>
<series>
<title level="j">Evolutionary bioinformatics online</title>
<idno type="eISSN">1176-9343</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rapid alkalinization factors (RALFs) are plant small peptides that could induce a rapid pH increase in the medium of plant cell suspension culture and play a critical role in plant development. The evolutionary process of the RALF gene family remains unclear. To obtain details of the phylogeny of these genes, this study characterized RALF genes in Arabidopsis, rice, poplar and maize. Phylogenetic trees, evolutionary patterns and molecular evolutionary rates were used to elucidate the evolutionary process of this gene family. In addition, the different signatures of selection, expression patterns, and subcellular localization of RALFs were also analyzed. We found that the RALF gene family had a rapid birth process after the separation of the eudicot and monocot species about 145 million years ago, that tandem duplication played a dominant role in the expansion of Arabidopsis and rice RALF gene family, and that RALFs were under purifying selection according to estimations of the substitution rates of these genes. We also identified a diverse expression pattern of RALF genes and predominant extracellular localization feature of RALF proteins. Our findings shed light on several key differences in RALF gene family evolution among the plant species, which may provide a scaffold for future functional analysis of this family.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">22745530</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>08</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1176-9343</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>Evolutionary bioinformatics online</Title>
<ISOAbbreviation>Evol Bioinform Online</ISOAbbreviation>
</Journal>
<ArticleTitle>Evolution of the RALF Gene Family in Plants: Gene Duplication and Selection Patterns.</ArticleTitle>
<Pagination>
<MedlinePgn>271-92</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.4137/EBO.S9652</ELocationID>
<Abstract>
<AbstractText>Rapid alkalinization factors (RALFs) are plant small peptides that could induce a rapid pH increase in the medium of plant cell suspension culture and play a critical role in plant development. The evolutionary process of the RALF gene family remains unclear. To obtain details of the phylogeny of these genes, this study characterized RALF genes in Arabidopsis, rice, poplar and maize. Phylogenetic trees, evolutionary patterns and molecular evolutionary rates were used to elucidate the evolutionary process of this gene family. In addition, the different signatures of selection, expression patterns, and subcellular localization of RALFs were also analyzed. We found that the RALF gene family had a rapid birth process after the separation of the eudicot and monocot species about 145 million years ago, that tandem duplication played a dominant role in the expansion of Arabidopsis and rice RALF gene family, and that RALFs were under purifying selection according to estimations of the substitution rates of these genes. We also identified a diverse expression pattern of RALF genes and predominant extracellular localization feature of RALF proteins. Our findings shed light on several key differences in RALF gene family evolution among the plant species, which may provide a scaffold for future functional analysis of this family.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cao</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Life Science, Jiangsu University, Xuefu Road 301, Zhenjiang (212013), Jiangsu, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Feng</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>06</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Evol Bioinform Online</MedlineTA>
<NlmUniqueID>101256319</NlmUniqueID>
<ISSNLinking>1176-9343</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">RALF</Keyword>
<Keyword MajorTopicYN="N">evolution</Keyword>
<Keyword MajorTopicYN="N">selection</Keyword>
<Keyword MajorTopicYN="N">tandem duplication</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>6</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>6</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>6</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22745530</ArticleId>
<ArticleId IdType="doi">10.4137/EBO.S9652</ArticleId>
<ArticleId IdType="pii">ebo-8-2012-271</ArticleId>
<ArticleId IdType="pmc">PMC3382376</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D205-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18984618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Feb;155(2):835-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21119043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 May 1;21(9):2101-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15647294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Mar 19;283(5409):1911-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10082464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W506-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):835-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19126682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2004 Jun;47(3):610-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15190378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2011 Jan;52(1):5-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21071428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Sep;59(6):930-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19473327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Jan;220(3):447-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15293049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1920-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10677556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Nov 25;100 Suppl 2:14577-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12949264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Jul;15(7):1507-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12837943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13560-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10557360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Struct Dyn. 2011 Feb;28(4):535-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21142222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Oct;15(10):2296-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12972671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 May 1;23(9):1073-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17332019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Jun 17;47(24):6311-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18494498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Dec;52(5):877-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17916115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Bioinformatics. 2008;2008:420747</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19956698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19265555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Nov 26;286(5445):1697-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10576728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 5;296(5565):79-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11935017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Aug 11;313(5788):842-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16902140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Feb;13(2):137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):817-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Jan;18(1):207-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11836235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Sep;136(1):2621-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15375207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Funct Genomics. 2003;3(1-4):35-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12836683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Nov;5(11):1342-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21045555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Oct;9(10):1713-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9368412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D959-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18063570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 Jun;73(3):271-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20148351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Aug 27;329(5995):1065-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20798316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jul;16(7):1667-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Aug;21(8):1118-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18616408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2000;7(3-4):429-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11108472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1999 Sep;15(9):763-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10498777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Feb;131(2):814-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12586905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1999 Dec 3;462(3):387-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10622731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2008 Oct 15;582(23-24):3343-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18775699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Feb;3(2):e38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15685292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jun 1;25(11):1451-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19346325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1990 Mar 1;87(1):23-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2110097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jun;153(2):703-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20388667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 10;290(5494):1151-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11073452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9903-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15161969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D225-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21109532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Dec 14;408(6814):796-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11130711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2011 Apr 12;7:481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21487400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2005;6(9):R75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16168082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12843-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11675511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 May 19;275(20):15520-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10809784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jul;120(3):867-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10398723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2010 Oct;37(7):3273-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19876763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17517783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 May;38(4):699-713</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15125775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>In Silico Biol. 2002;2(4):441-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12611624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protein Pept Sci. 2005 Feb;6(1):85-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15638771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011;12:465</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21943393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1993 Sep;37(3):273-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8230251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Mar 19;458(7236):357-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19295610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Mar;37(5):668-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Mar 27;422(6930):433-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12660784</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Shi, Feng" sort="Shi, Feng" uniqKey="Shi F" first="Feng" last="Shi">Feng Shi</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Cao, Jun" sort="Cao, Jun" uniqKey="Cao J" first="Jun" last="Cao">Jun Cao</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A96 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002A96 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22745530
   |texte=   Evolution of the RALF Gene Family in Plants: Gene Duplication and Selection Patterns.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22745530" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020